
Electronic Contest

14th International 24-hour Programming Contest

http://ch24.org

1

2

Electronic Contest
Welcome to the qualifying round of the 14th International 24-hour Programming Contest!

This document is the problem set for the Electronic Contest to be held on February 8th, 2014.

Rules

The Electronic Contest contains multiple problems. You have all the time in the world to solve them, but
we take submissions from 10:00 to 16:00 CET. The inputs of the problems can be found in a zip file that
you have probably already downloaded from the website.

You can use any platform or programming language to solve the problems. We are interested only in the
output files, you don’t need to upload the source code of the programs that solved them. Once you are
done, you can upload your output files via the submission site: http://sub.ch24.org/sub/. Your solutions
will be evaluated on-line.

Problems are scored in three major ways:

Time scoring: these problems have exact solutions. When submissions to these are evaluated, a final
score is given immediately. From one team, only one correct submission will be accepted for each
input (since the input is either solved or not). Given score decreases with time until the end of the
contest, so faster solutions get more points.
Competitive scoring: problems that do not have a known "best" solution. Outputs for these problems
compete against each other, and scores are scaled according to the best uploaded output. A team may
submit multiple correct submissions to one input (only the latest submission will be taken into
consideration).
Proportional scoring: solutions to these problems will be compared against a chosen standard. The
final score is calculated from the ratio of the evaluated score of the output to a selected constant. A
team may submit multiple correct submissions to one input (only the latest submission will be taken
into consideration).

Note that points are awarded per output file and not per problem. If your solution only works for some of
the input files, you will still be awarded points for the correct output files. A single output file however is
either correct or wrong - partially correct output files are not worth any points.

Additional information for time scoring:

Be quick about uploading the output files, because the scores awarded for every output file decrease with
time. Uploading it just before the end of the contest is worth 70% of the maximum points achievable for
the test case. During the contest its value decreases linearly with time. However you should also be careful
with uploading solutions. Uploading an incorrect solution is worth negative points. This penalty is
additive, if you upload more incorrect solutions, you will receive it multiple times. For some problems, we
distinguish format errors (unparsable outputs) from incorrect outputs, and the former will not be penalised.

3

http://sub.ch24.org/sub/

Please note that for time-scored problems there is no point in uploading another solution for an already
solved testcase because you cannot achieve more points with it. Therefore the system will not register
additional uploads for solved testcases for those tasks.

For some time-scored problems, after submitting an incorrect solution, there may be a certain short delay
(a couple of minutes) until you can re-submit an updated solution. The delay is applied per team per task
per input, and is reported on the submission web interface.

Additional information for competitive scoring:

In this case there will be no score penalty for uploading a solution later, so you are able to achieve the
maximum amount of points by submitting in the very last minute - if you beat the other teams’ solutions,
that is. However, to avoid overloading our server, after submitting a correct solution, you may not
re-submit an updated solution for a certain short delay (a couple of minutes). The delay is applied per team
per task per input, and is reported on the submission web interface.

Scores for competitively scored problems are recalculated occasionally (every few minutes). Your points
may decrease in time (when another team submits a better solution than yours).

Please be aware that only your last submission is considered - not your best one.

Good luck and have fun!

About the Submission site

The location of the submission site is:

http://sub.ch24.org/sub/

You will be able to log in to the submission site with your registered team name and password. After login
you can access three main views:

Team Status

You can see your team’s status here, with all your submissions and the points received for them.

Submit

This is where you can post your solution files. You can upload multiple output files for multiple problems
with a single submit. The naming of the output files must strictly match the following format: X99.out -
where X is the problem’s character code followed by a number (1 or 2 digits) identifying the test case.

Scores

Here you can see the current standings of the contest. This will not be available in the last hour.

4

http://sub.ch24.org/sub/

Contact

You can contact us at the email address info14@ch24.org with questions.

During the contest we will be available on IRC on the irc.ch24.org server (using the default port,
6667), on the following channels:

#challenge24 for general discussion about the contest,
#info for a full summary of announcements (read-only),
dedicated channels #a , #b , #c , #d , #e , #f , #g , #h , #i , #j for problem specific questions.

Note: all relevant questions/answers will be copied to #info, which will be also available on the
submission site.

5

http://en.wikipedia.org/wiki/Irc

Prologue: Managing World Security
Not all citizens are lawful these days - there are criminals, terrorists, axes of evil, and many Very Bad
People in general. Fortunately large, international organizations such as WSA (World Security Agency)
take care of your security. To do so, WSA needs to employ sophisticated means of espionage, including a
few methods that are related to information technology.

This Electronic Contest is part of a test program that aims to use community resources in aid of the WSA
Anti-Evil Spying Operations.

Disclaimer: the WSA does not interfere with the best interest of lawful citizens. All operations are targeted
on Evil People. If you’re Good, you don’t have anything to be afraid of!

Task Summary

Task Score Scoring type Wrong answer penalty Delay Input format

A. Safe 1000 time -5 points 0 text

B. Wiretapping 1000 time -5 points 0 text

C. Visual Programming VM 500 time -2 points 60s text

D. Visual Programming 2000 time -5 points 60s text

E. Travelling 1000 time -5 points 0 text

F. Forensics 1000 time -5 points 0 wav

G. Spy Union 1000 time -5 points 0 text

H. Tile Design 1000 proportional -5 points 0 text

I. Crowd Control 1000 time -5 points 0 text

J. Image compression 1000 competitive 0 points 60s png

Wrong answer penalty: Penalty after each wrong output submitted.
Delay: Time duration until no solution can be submitted for the same input.
Score: most problems have 10 inputs and each one is worth 100 points at most.
Problem C has only 5 inputs.
Problem D has 10 inputs, but each one is worth 200 points.

For each task there is a dedicated irc channel for questions: #a , #b , #c , #d , #e , #f , #g , #h , #i , #j .

6

A. Safe

The WSA prints every important document and stores
the printouts in large, secure safes. As per policy,
safes always must be closed after use, forcing
employees to open each safe hundreds of times per
day. A key point of optimizing processes at the WSA
is to speed up entering passwords for safes.

The keyboard keys on the safe are not ordinary keys,
every time they are pressed they don’t just enter the
letter displayed on them as input, but the letter
displayed on them changes as well. For each key,
there is a cycle of letters that can appear

The cycle of each key (actual letters the key would
input push-by-push, in order) is known as well as the
password that needs to be entered. The code is
accepted only if a password of length N is entered
using the last N key presses (that is, there’s no way to
reset cycles in between). All keys start on the first
letter of their cycle (and the cycle can loop around).

source:
http://commons.wikimedia.org/wiki/File:Enigma_rotors_with_alphabet_rings.jpg

The task is to find the least amount of key presses needed to enter the code.

For each keyboard there are several different passwords that the task should be solved for.

Input
The first line contains one number, N, the number of keys. The next N lines contain the cycle for each key,
consisting only of capital English letters. The following line contains M, the number of passwords that
need to be typed on this keyboard. The next M lines contain the M passwords.

Output
A single number on a separate line for each input code, in order. If it is possible to enter the code, output
the number of key presses necessary, otherwise output "-1".

Example input
3
ABC
TEST
CAT
4
TEST
CC
STT
TT

Example output
4
4
5
4

7

B. Wiretapping

The WSA used to tap a lot of phone lines - it’s a great
way of catching evil plots that the terrorist cells
carelessly discuss between themselves using the
public phone system. Lately, the WSA had to reduce
costs by cutting back on traditional wiretapping, and
they are trying to determine which few phone lines
they will concentrate their remaining resources on.

There is a large list of terrorist cell relationships,
otherwise known as phone lines (collected by other
means).

http://openclipart.org/detail/99967/black-orange-men-cloud-by-pydubreucq

When the Head of Bad People decides to do something Evil, he hatches the Master Plan; the plan is then
broadcast to all cells, using the public phone network.

The WSA assumes that terrorists behave rationally, thus:

they utilize the smallest possible amount of connections (minimizing number of phone calls)
they always distribute the plan to every cell.

A talented young agent has chosen a phone line the tap is installed on. Your task is to determine the
probability of catching the important broadcast, whichever connection setup the terrorist chose this time.

Input
The first line contains two integers N and E, the number of cells and potential phone connections,
respectively. The next E lines are the edges given as a pair of integers A and B, each between 0 and N-1,
representing a potential phone call between cells A and B.

The wiretap is placed on the first connection on the list.

Output
A single number to 1e-6 precision describing the probability of catching the message on the tapped line.

8

Example input
6 12
0 1
1 2
2 3
3 4
4 5
3 0
0 2
1 3
2 4
3 5
4 0
5 1

Example output
0.4194444444

9

C. Visual Programming - VM

The WSA employs many programmers, who perform a bit better or a
bit worse each day. This results in higher or lower quality code
accordingly. The management understands the importance of high
quality code (especially in such a security-sensitive domain!), therefore
they decided to optimize the processes of the WSA software
department.

The first step of the effort was to send a few managers to understand
the nature of the problems. The programmers had shown thousands of
lines of source code, written in various languages the managers had
never seen before. They had a hard time trying to understand all this,
and after weeks of evaluation, they figured out why: most
programming languages are too complicated! They concluded that they
must design a new programming language that is much simpler, and
mandate its use within the organization.

Almost accurate visualisation of the example program
(0.pp) for this task

They came up with something more visual (thus user friendly) and vastly simpler (it has only two different
constructions and only one kind of instruction). Programmers were initially sceptical of the practicability
of these ideas, so WSA management has hired you to prove the merits of the language by implementing
certain example algorithms.

This problem is so large it’s split in two separate problems: first you should write and test your toolchain
for dealing with polyprog programs, then (using your brand new tools) you can attempt to create the
example programs.

programming polyprog
The polyprog machine has 16 registers, of which the first 15 (from 0 to 14) are general purpose, while
register 15 is the serial input/output (SIO) device. Registers store 16 bit unsigned integers.

Polyprog programs are represented by a list of polygons and lines. Color is specified in 32 bit RGBA
(each component is an integer between 0 and 255). Coordinates are unsigned 16 bit integer x;y pairs. A
polygon has a fill color, a stroke color, and at least 3 vertices specified by their coordinates. A line is a
color and an ordered list of points (coordinates); the end points are the first and last points on the list.

To keep source code clean and readable:

polygons shall not overlap or touch other polygons
lines may not overlap or touch polygons except that both endpoints of the lines must be on polygon
vertices
lines may intersect other lines
a polygon vertex may be the same position with zero or one line end point
line mid points may overlap each other
the number of points in a line is limited to LLEN, including the two endpoints
dimensions of the program (maximum x and y coordinates) are limited to DIM units; (0 <= x < DIM)

10

and (0 <= y < DIM).

All polygons have at least one line connected to them and a valid program contains at least one polygon.

Limits: DIM=65536 and LLEN=16.

the polyprog processor
The processor has an instruction pointer which points to one of the polygons. A polygon instruction is
executed in multiple stages:

Stage 1: register operation

register A is addressed by the high order 4 bits of fill:red
register B is addressed by the low order 4 bits of fill:red
register C is addressed by the high order 4 bits of fill:green
register D is addressed by the low order 4 bits of fill:green
register E is addressed by the high order 4 bits of fill:blue
register F is addressed by the low order 4 bits of fill:blue
constant X is fill:alpha
constant Y is stroke:red
constant Z is stroke:green*256 + stroke:blue
constant T is stroke:alpha

perform

 A = (Y + B + C * D + Register[F]) * (255-X) / ((255-T) + E) + Z

and update A accordingly. Register values and constants are converted to 32 bit unsigned integers for the
calculation; at the end, the result is truncated back to a 16 bit unsigned integer. (Thus, operations are
evaluated modulo 232, division is integer division with non-negative operands, a zero second operand is
fatal error and the final result modulo 216 is stored in A.)

Register[F] means the lower 4 bits of the value in F selects which register’s value is substituted (the
higher 4 bits are ignored).

Stage 2: route selection

Take every vertex of the polygon that has a connected line, sort them by y*DIM+x in ascending order, and
walk this list checking for the following condition:

register Q is addressed by the low order 4 bits of the x coordinate
constant L is line:red*256 + line:green
constant H is line:blue*256 + line:alpha
if (Q >= L) and (Q < H), the condition is statisfied

11

Stage 3: jump

Pick the vertex for which the condition was first satisfied in Stage 2; or if there’s no such vertex, pick the
last vertex in the above order. The instruction pointer is modified to point to the polygon on the other end
of the line connected to the picked vertex.

reset
After a reset all general purpose registers are initialized to contain their own addresses (so that the value in
register N is N). The instruction pointer is pointing to the polygon that has the vertex with min(y*DIM+x).
The program’s input stream is set up so that the first read will get the first byte in the input.

serial input and output (SIO)
When register 15 (SIO) is read, it returns the next byte in the input stream until EOF; once EOF is
reached, all subsequent reads will result in EOF. When SIO is written, it appends the byte to the output
stream. If an instruction (polygon) attempts to read SIO multiple times, only the first attempt will result in
reading a byte from the input stream, subsequent reads in the same instruction will reuse the same
(cached) value without removing more bytes from the input. It is possible to read and write SIO in the
same instruction, in which case the write happens later. The program stops running immediately when
EOF is written to the serial output.

SIO data is an unsigned 8 bit integer placed in the least significant 8 bits of the register, leaving the upper
8 bits 0:

MSB LSB
15 0
0 0 0 0 0 0 0 0 d d d d d d d d

Input EOF is a word with value 256:

MSB LSB
15 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Output EOF is a word with value >255: at least one of the z bits is 1. (In this case, x bits are ignored.)

MSB LSB
15 0
z z z z z z z z x x x x x x x x

program submission syntax
The first line of the program contains two integers P and L separated by a space; P is the number of
polygons, L is the number of lines. The next P lines describe polygons, then the next L lines describe lines.

A polygon description starts with 4 integers SR, SG, SB, SA for the stroke color components, then 4
integers FR, FG, FB, SB for the fill color components and an integer C, number of vertices. The rest of the
line is a space separated list of X space Y coordinates of the vertices in CW or CCW order.

12

A line entry starts with 4 integers R, B, G and A for the color of the line, followed by integer P (the
number of points) and list of X space Y coordinates giving the points of the line. P is limited to: 2 <= P <=
LLEN.

Tasks

This task is provided as an aid for developing your own toolchain, especially an interpreter, to develop,
run and debug polyprogs. Please make sure you solve all inputs of this task before trying to solve the
next problem.

Any new implementation of polyprog compilers and interpreters must comply with the standard described
above. Verification is possible using the reference programs the Managers have provided. An implementor
should run all five reference programs and compare the output to the reference outputs. Unfortunately the
reference output of these programs is the Intellectual Property of the WSA, but the managers are willing to
compare your output to the references and tell if they match.

Input

You need to run five polyprog programs. A reference serial input, serial.in.bin is also provided; before
running a reference program, the SIO’s read pointer should be reset to the beginning of this file. Note:
serial.in.bin is a binary file.

Output

The output as written by the program on the SIO. Output files are binary, but never contain the \0 (nil)
character. If your interpreter outputs \0 executing any of the reference programs, it is broken.

Example input
2 1
0 0 0 254 47 0 0 254 3 100 100 110 110 80 110
0 0 0 254 255 18 0 254 3 200 200 210 210 176 210
0 0 0 1 3 80 110 150 150 176 210

("The Input stream contains pairs of 7-bit unsigned integers in binary format; sum each pair and print the
result to the output as 8-bit unsigned int in binary format. The program shall stop when EOF is read on
the input stream. If the input stream contains an odd number of bytes, ignore the last byte.")

Example output
Running the reference solution on serial.in.bin should result in 3 bytes on the output stream - here
represented in a hexadecimal format:

D3 D1 D5

13

D. Visual Programming

For each problem input you should write programs in the
polygon programming language that read the input through the
SIO register, evaluate it, and write suitable output through SIO.
Each problem input is a different programming task. You
should upload a polygon program for each. The problem input
tasks are semi-independent: in case you can write a generic
solution that solves more than one task, you may submit the
same program to multiple inputs.

The evaluation server will run your program multiple times
with different example input streams and determine the raw
score as a sum of the following:

the program outputs the right solution for every example
input stream: 200 points;
or the program outputs a wrong solution or crashes or
violates the limits: stop testing, report failure, penalty.

Note: in the input and output format description, an EOF at the
end of the stream is always assumed; this EOF is not a real
character and thus does not count when calculating the length
of the stream.

Submissions are evaluated on the reference implementation of
the polyprog environment; to avoid contributing to global
warming by excess simulation of infinite loops programs are
stopped after executing 200000 polygons, without writing an
EOF. Such greedy porgrams are obviously not accepted as they
fail to terminate their output stream with an EOF.

It is strongly recommended to solve all inputs of the
previous task before solving this one!

Reference program four (4.pp) from the previous task

14

Task summary

problem
id

serial input syntax short description

1 list of uint8 and + calculate sum, no overflow

2 list of uint8 and + and - calculate sum, no overflow

3 list of uint8 and +, -, * and / evaluate the expression, no precedence

4 decimal number in ASCII text decimal to binary converter

5 uint16 binary number binary to decimal converter

6
plain text input: numbers and operators (+, -,
*, /)

evaluate the expression (as in 3), no
precedence

7 same as problem 6, plus the ^ operator for generic power

8 same as problem 7, plus the _ operator for generic root

9 list of uint64 in binary and + operator same as problem 1

10 list of uint64 in binary and + and - operators same as problem 1

Detailed specification

description input output

Problem 1: Input stream is a list of number-operator pairs. Numbers are 1 byte long
unsigned integers, the operator is always a plus sign (’+’). The program shall evaluate
the expression on the input and calculate the result and print it on the output as an
unsigned 16 bit integer. When printing the output, the most significant byte shall be
printed first. The last operator is omitted, the input ends with a number.

A valid input stream contains an odd number of bytes, every second byte is a ’+’
operator. If the operator byte is ’-’, ’*’ or ’/’ then the behaviour is undefined (won’t be
tested), otherwise if the input is not valid, the program shall print the text "ERROR"
and a newline (in 6 bytes) and exit. The ERROR message in hex is: 45 52 52 4F
52 0A <EOF> .

Problem inputs are designed to yield a sum less than 65536, therefore this example
program doesn’t need to deal with overflows.

(hex)

02 2B
07

(hex)

00 09

15

description input output

Problem 2: Same as problem 1, except the operator may be a plus or a minus sign (’-’);
minus means subtraction. Assuming operations are performed in order of apperance, the
problem inputs will guarantee that the result of the expression up to any operator will be
between -32768 and +32767. Output must be written in two’s complement format.

(hex)

02 2B
07 2D
03

(hex)

00 06

Problem 3: Same as problem 2, except the operator may be a plus, minus, multiply
(’*’) and divide (’/’). There is no operator precedence in this task, operations are
executed in order they appear, so 2+3*4 is not evaluated as 2+(3*4) but as (2+3)*4.
Division by zero shall result in the ERROR message. Divisions are integer divisions.
The dividend is never negative. The problem inputs do not contain calculations with
any intermediate result out of the -32768 and +32767 range (the program doesn’t have
to care about overflow conditions).

(hex)

02 2B
07 2D
03 2A
04 2F
03

(hex)

00 08

Problem 4: Input stream is a number written as ASCII text in decimal format. The
program shall read the input, convert it to an unsigned 8 bit integer and print it in binary
format to the serial output.

If the input contains anything else than digits, the program shall quit without printing
any character.

Input is always between 0 and 255, range check is not required. Leading zeros shall be
accepted.

(hex)

31 32
33

(hex)

7B

Problem 5: Input stream is a list of 16 bit unsigned integers, most significant byte first,
thus consisting of an even number of bytes altogether. After the second byte of an item
is received it should immediately print an ASCII decimal representation of that number
(with leading zeros filled up to a width of 5 characters) and a newline. If the input
terminates after odd number of bytes, the program shall print the ERROR message.

(hex)

10 70

(hex)

30 32
36 33
30

Problem 6: Same as problem 3, but input is ASCII text: each line is a decimal number
or an operator. Lines are terminated with a single newline character (ASCII 10, "\n").
The first and the last line of the stream must be numbers. Numbers are unsigned
integers between 0 and 32767 and may contain leading zeros. The output format is the
same as in problem 5. The program is not required to do anything special for overflows.

If a number-line of the input contains anything other character than digits, the
operator-line is not a ’+’, ’-’, ’/’, ’*’, ’^’ or ’_’ or an input line is empty, the program
shall print the ERROR message. If the operator is ’^’ or ’_’ the behaviour is undefined
(won’t be tested).

(text)

12
+
55
/
2
*
3

(text)

00099

16

description input output

Problem 7: Same as problem 6, with an extra operator "^", which
means power: ^b means the result of the previous part to the power of
b. The problem inputs will not use the power feature to generate
numbers larger than 32767. Corner cases:

0^0: the result is 1
0^1: the result is 0

(text)

02
*
3
^
4

(text)

01296

Problem 8: Same as problem 7, with a generic root operator ’_’: _b
means the result of the previous part to the root of b. For example 8_3
is 2. Since this is only a demonstration program, the managers are
tolerant with the precision of the root operator: the result is accepted if
it’s +-2 of the root calculated with infinite precision truncated to
integer; the inifinite precision is meant for the root operation only, not
for any previous calculations. For example 122_3 is approximately
4.95968 thus the range of acceptance is (4-2)..(4+2), so anything
between 2 and 6 (inclusive) is accepted (exception: "_1" must be
precise). Corner cases:

a_1: must be exactly a, the +-2 tolerance is not applied here
a_0: the ERROR message

(text)

2
*
3
+
100
*
19
_
3

(text)

00012

(but 00010,
00011, 00013
and 00014 are
also accepted)

Problem 9: Same as problem 1, but for 64 bit unsigned integers. Both
input and output numbers are 8 byte long, with the least significant
byte written first (unlike in the previous problems!).

The addition shall be done modulo 264.

If the operator byte is ’-’ the behaviour is undefined (won’t be tested),
otherwise if the operator is not ’+’ or the end of the input stream is
reached unexpectedly, print the ERROR message.

(hex)

86 47 F0 75
12 60 3F 13
2B
7D 0D E5 60
3F 83 C0 2F

(hex)

03 55 D5 D6
51 E3 FF 42

Problem 10: Same as problem 9, with an extra operator ’-’ for
subtraction modulo 264. Input will not contain numbers larger than
263-1.

(hex)

03 00 00 00
00 00 00 00
2B
02 00 00 00
00 00 00 00
2D
09 00 00 00
00 00 00 00

(hex)

FC FF FF FF
FF FF FF FF

17

E. Travelling

Some WSA agents travel frequently on official
business, and they figured out how to cheat the
WSA’s working time accounting system. The trick is
that if they have to visit a lot of distant cities, they
travel more to the east than to the west, and they use
local time zones for logging their time. As long as
they don’t travel around the globe twice, and they
choose a reasonably short path, no one would notice.

At least, so they thought. WSA management
eventually discovered the cheating (...no they didn’t;
rather, someone snitched), and they want to estimate
the losses. They handed you 10 lists of cities that
agents usually visit (with coordinates).

source:http://openclipart.org/detail/170988/travel-globe-by-gnokii-170988

Find the shortest tour visiting all the listed locations without ever traveling West (longitude shall never
decrease, except when crossing the antimeridian) and without traveling around the planet more than twice.

Input

The first line contains N, the number of locations and the following N lines are the (latitude, longitude)
coordinates of the locations in degrees. (-90 ≤ latitude ≤ 90 increasing to the North and -180 ≤ longitude ≤
180 increasing to the East and there are no locations exactly at the same longitude or at the poles)

Output

The first line should contain the length of the optimal tour in km (to one meter precision; Earth is
approximated as a perfect sphere with R = 6371 km radius).

The second line should contain N+1 numbers separated by whitespace: the indices of the locations in the
order they are visited in the optimal tour (indexing starts from 0, based on the order in the input, the last
location must be the same as the first one and the longitude of consecutive locations must not decrease
more than twice).

Example input
6
40 0.5
-60 50
-10 -80
80 1e2
30 -160
-70 140

Example output
53904.473044
4 1 5 2 0 3 4

18

F. Forensics

During the last WSA conference, the second most
important event after the annual "state of the War On
Bad People" presentation was that the director of WSA
had been assassinated. Because of the crowd and the
panic after the incident, the perpetrator could escape.
The WSA hasn’t been able to determine the identity of
the attacker yet, even with the footage from the
numerous installed security cameras.

A small autonomous flying device was used in the
attack (a "hunter-seeker"). The device was homemade
and built entirely from plastic (probably to evade metal
detectors). Possibly because of design contraints
imposed by this, the device could only fly in a straight
line with constant speed, and emitted a particular,
audible humming.

source: http://commons.wikimedia.org/wiki/File:Nano_Hummingbird.jpg

Since there was a microphone installed between the director and the crowd, there is a high quality audio
recording of the whole event, including the humming (which was identified as a periodic, fixed frequency
signal).

The WSA has a theory that careful evaluation of this record could reveal the exact position of the assassin.
The recording is classified Top Secret for the next 80 years; however, the WSA is willing to share an
edited version with capable forensics who can first prove their skills on 10 simulated inputs. The inputs
are carefully filtered similarly to how the real recording will be (e.g. to remove potentially disturbing
sounds that are not directly useful to the task at hand, and to equalize the volume of the humming effect
for easier processing).

The room is large and flat, the hunter-seeker flies in a straight horizontal line at an unknown constant
speed which is less than the speed of sound. The speed of sound is c=343.2 m/s. The radius of Earth, the
gravity, air properties (humidity, friction, etc) can be discarded in such a small room.

Input
A 8 bit wav sampled at 44100 Hz rate. The recording starts when the hunter-seeker appeared.

Output
The distance of the attacker from the microphone in meters to 1 meter precision when he released the
hunter-seeker.

Example input
Please refer to 0.wav.

Example output
404.475

19

G. Spy Union

The spy network of the WSA has grown too big, downsizing is
unavoidable. Unfortunately the Trade Union of Spies is large and
strong, and they have spies everywhere. After many months of
fruitless fighting, the management of the WSA met the
representatives of the union, and together they came up with two
directed trees.

The first tree represents the hierarchy of the WSA. Each employee
is a node, and each node is the head of a department (the node
together with all its descendants). Each node is tagged with an
integer that specifies how many employees have to be in that
department to keep the organization operational. The second tree is
the hierarchy of the union - a different hierarchy with different
integers, but the meaning of the tree is the same. All employees are
present in both trees.

Your task is to determine which employees to dismiss to get the
smallest possible organization while still keeping all WSA and
union departments operational.

source:
http://pixabay.com/en/silhouettes-hierarchy-human-man-81830/

Note that department heads may be fired - in which case a subordinate will be the new head; but some
departments may have a tag of 0, meaning that the department is superfluous and may be eliminated
altogether.

Input
The first line is an integer N, the number of employees. Their Employee ID (EID) is an integer between 0
and N-1. The next N lines refer to employees, the nth line to the employee with EID n, in Bw Bu Rw Ru
format. Bx is the EID of this employee’s boss in the w (WSA) or u (union) hierarchies (0 <= Bx < N, the
boss EID of the top manager is their own number). Rx is the number of required people in this employee’s
respective subtree (0 <= Rx <= N).

Output
The first line is K, the maximum number of employees who can be fired. The second line contains K
integers, the EIDs of the dismissed employees.

Example input
5
1 0 1 2
2 0 1 2
2 1 2 0
2 1 0 1
1 3 0 0

Example output
2
4 2

20

H. Tile design

In the brand new HQ of the WSA, construction subcontractors are working on
the last tweaks, like tiling the personal hygiene facilities (bathrooms). The
overall design concept dictates that the wall patterns must match the purpose of
each room, so the selected bathroom tile design features pipe sections.

Each tile has exactly one pipe printed on it:

a straight pipe section;
or a pipe corner.

source:
http://www.photos-public-domain.com/

2011/12/30/blue-bathroom-tile-
with-swirl-pattern-texture/

Tiles can be rotated but not mirrored.

When designing tiling layouts, there are some psychological constraints as well. Imagine what guests
would think seeing a decorative pipe system that just ends abruptly - it may make them imagine that the
WSA organization is not a single, seamless, organically interconnected system. To avoid such
misunderstandings, the pipeline must not have ends; which is possible by designing a large single loop that
covers the wall.

Furthermore, users well-versed in algorithmic security may object to seeing long repeated patterns in such
loops, because those would suggest that entropy in the WSA is low. How could they trust the WSA’s
cryptography and the randomness of its keys if the WSA can’t even build a random enough tile layout?

Your task is to help the designer to tile the wall so that all available space is covered by tiles, the pipes on
the tiles form a single loop, and the longest repeating pipe sequence of the design is as short as possible.

Input
Three integers, W, H and L, where W and H are the width and height (measured in number of tiles) of the
wall and L is the length of the longest repeating pipe line we want to achieve (see below).

Output
The first line is two integers W, H (matching width and height in the input). The follwing H lines form a
large "ASCII art" representation of the tile figures, one character per tile, each line containing W
characters. The meaning of the characters:

character F 7 J L - I

figure

21

So each tile figure is a pipe section with some orientation. The pipe sections have a flow direction as well
that is not represented in the plan, but will be visible on the final design, where tiles will be placed so that
the flow can go around the wall in positive direction.

A pipe line is a sequence of neighboring tiles with connected pipe sections following the direction of the
flow. If the pipe line connects back to itself then it’s a loop. All the tiles should form a single loop, but the
longest repeating pipe line (LRPL) must be as short as possible (ideally L or less). A rotated version of the
pipe line is considered to be a repetition, but a mirrored one is not. Repetitions can overlap.

Finding a solution with longer than L repetitions will earn less than 100 points by the following formula:

Scoring
if LRPL ≤ L then SCORE = 100
else if LRPL ≥ L+25 then SCORE = 0
else SCORE = round(0.16*(L+25-LRPL) 2)

Example input
8 8 5

Example output
8 8
F--7F--7
IF7IL7FJ
IIIL-JL7
IIL-7F-J
IIF7IIF7
LJILJII I
F-JF7LJ I
L--J L--J

The longest repeating pipe line in the example is 6 (hilighted), so its score is 92.

Note that the hilighted part below is not a rotated and overlapping 8 length repetition, because pipes are
directed.

8 8
F--7F--7
I F7IL7FJ
I IIL-JL7
I IL-7F-J
IIF7IIF7
LJILJIII
F-JF7LJI
L--JL--J

22

I. Crowd control

Because of crowd management difficulties experienced during
recent unfortunate events regarding the WSA leadership, the WSA
decided to investigate the flow of personnel in public buildings. A
stampede of people constrained in passages partially blocked by
columns, plants, janitors, and other debris caused unwelcome media
attention and made it difficult to control "demonstrators" and other
undesirables.

Based on advice from their private hands-on security experts and
other consultants, the WSA decided that in the future it wishes to
arrange conferences in buildings that can pass people through at a
given rate during escape scenarios.

source:
http://vector.me/browse/182519/emergency_exit_sign_clip_art

Your task is to find the maximum possible flow rate of people for each given layout. (Keep in mind that
the carrying capacity of a corridor is proportional to its cross section.)

Input
The layout is represented as a polygon, two sides of which are the entrance and the exit. All the obstacles
are also given as polygons. Other than the neighbouring sides of polygons, the lines never touch.

First line contains 3 numbers, first o, the number of obstacles, then b end e, the beginning and end sides of
the outer polygon. The side of the outer polygon between the bth and (b+1)th vertices is the beginning,
and the side of the outer polygon between the eth and (e+1)th vertices is the end. 0 < b, e < n of outer
polygon.

Next is the outer polygon, the first line of which is n, the number of sides, then n lines with the x and y
coordinates of the n vertices, starting with the 1st vertex. The coordinates are all floating point numbers.

Next come the o obstacles in the same format.

Output
The width of a simple corridor with the equivalent flow rate to this layout (as a floating point number).

We accept an output if it is within 0.0001% of the official solution.

23

Example input
1 2 6
8
0 0
0 1
0 4
0 5
4 5
6 4
6 1
6 0
4
2 1
2 4
4 4
4 1

Example output
1.89442719

In the example, a big obstacle in the middle splits the layout to two corridors.
The bottom corridor has a width of 1, but the top corridor is only 0.89442719
wide at its narrowest point, marked by the red dashed line, so the total possible
flow is equivalent to a corridor that is 1.89442719 wide.

24

J. Image compression

The latest spy gadget is an earring that has a 2
terapixel camera, a 16 core compound graphics
processing and CPU unit, 4 TB of overclocked 512-bit
GDDRX RAM, and an user-expandable mass storage
interface. It can take and transmit photos of the finest
quality, whenever your ear itches; and the massive
heatsink lends a very fashionable look to the user.

Because of certain legal issues (regarding dubious
medical concerns about high-energy electromagnetic
radiation near the user’s brain), the bandwidth that the
earring may utilize during wireless image
transmission is extremely small. Until these obsolete
regulations are removed, the WSA has to compress
the images very severely. They came up with a
creative lossy compression format that will keep
major features reconstructible, and loses only some
unimportant details.

http://commons.wikimedia.org/wiki/File:Heightmap_rendered.png

The decompressor is already available; your task is to write the compressor. The WSA is looking for an
implementation that provides the best image output while staying inside the strict size requirements.

Given a grayscale input png (saved directly from the Intelligent/Imaging Serial CCD), you need to find a
suitable compression. The compressed image is described only by a couple of reference points. Each
reference point is a pair of coordinates and an intensity. The original image is reproduced by determining
the intensity of the missing pixels between reference points using the value of all reference points. The
exact method for any given pixel on the output is:

if there is a reference point on the pixel, output intensity is the same as the intensity of the reference
point
otherwise the intensity of the pixel is the weighted arithmetic mean (average) of all the reference
points’ intensity. For each reference point, the weight is the reciprocal of the squared distance from
the pixel (1 / (dx2 + dy2)).

Multiple reference points can not be placed on the same coordinates, all reference points must be within
the boundaries of the image.

The maximum number of reference points used to store an image is the sum of SX and SY, the horizontal
and vertical dimesions of the image in pixels.

25

Input
A grayscale png file.

Output
The first line is an integer N, the number of reference points used. The following N lines are reference
points in X Y I format where X and Y are the coordinates of the reference point and I is the intensity
between 0 (black) and 255 (white).

The top-left pixel of the image is X=0;Y=0.

Scoring

Scoring is based on the root mean squared error (RMSE):

Valid submissions are rendered to a grayscale image. The render and the input image are compared. The
intensity difference of each pixel is squared, then the average of the resulting values is calculated. The
square root of the average is the RMSE. This is then compared to the best submission so far. (The eval
score in the submission system is trunc(1000000*RMSE)):

 SCORE = 100*(1 - sqrt(1 - BEST/RMSE))

Example input Example output
(part 1)
32
14 10 12
4 6 24
0 28 24
11 3 233
17 14 236
13 10 234
30 8 235
31 3 242
28 17 20
14 23 243
10 27 6
2 4 236
20 14 27
20 17 1
13 11 28

Example output
(part 2)
9 22 13
17 9 23
22 14 11
16 6 237
9 29 26
14 4 241
22 11 31
17 30 10
12 9 236
26 8 26
8 19 0
21 23 14
3 23 227
14 2 6
29 11 235
13 23 22
11 28 13

26

	
	Electronic Contest
	
	Rules
	Additional information for time scoring:
	Additional information for competitive scoring:
	About the Submission site
	Team Status
	Submit
	Scores

	Contact

	Prologue: Managing World Security
	Task Summary

	A. Safe
	Input
	Output

	B. Wiretapping
	Input
	Output

	C. Visual Programming - VM
	programming polyprog
	the polyprog processor
	Stage 1: register operation
	Stage 2: route selection
	Stage 3: jump

	reset
	serial input and output (SIO)
	program submission syntax
	Tasks
	Input
	Output
	Example input
	Example output

	D. Visual Programming
	E. Travelling
	Input
	Output

	F. Forensics
	Input
	Output

	G. Spy Union
	Input
	Output

	H. Tile design
	Input
	Output
	Scoring

	I. Crowd control
	Input
	Output

	J. Image compression
	Input
	Output
	Scoring

